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Lyapunov exponents and the extensivity of dimensional loss for systems in thermal gradients
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An explicit relation between the dimensional lossY), entropy production, and transport is established
under thermal gradients, relating the microscopic and macroscopic behaviors of the system. The extensivity of
AD in systems with bulk behavior follows from the relation. The maximum Lyapunov exponents in thermal
equilibrium andAD in nonequilibrium depend on the choice of heat baths, while their product is unique and
macroscopic. Finite-size corrections are also computed and all results are verified numerically.
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I. INTRODUCTION Il. RELATIONS BETWEEN DIMENSIONAL LOSS,
LYAPUNOV EXPONENTS AND TRANSPORT

Fractal structures in phase space have become the focus Many of the issues relating D require the understand-

of_attentior_1 in the un_derstanding of the re!ationship b.e.“tweerihg of the Lyapunov spectrum of the nonequilibrium system,
microscopic - dynamics and macroscopic nonequilibriumy;pase analytic properties are known only in certain special
physics[1]. In the escape-rate formalism, the properties of acases{?]. Here, forAD, we use the Kaplan-Yorke dimension
fractal repellor are known to govern the transp@. In \yhich is known to be consistent with other definitions of the
contrast, in boundary-driven nonequilibrium steady statesattractor dimension for physically reasonable dynamical sys-
the stationary distribution is generally fractal, but the precisgems[1]. The precise definition oAD appears below. We
connection to transport is not fully understofdd. This re-  study general Hamiltonians coupled to two heat baths at dif-
duction in dimensionAD, has been argued to be related toferent temperatures at opposite sides of the system, generat-
transport[3-5], although the only precise understandinging heat flow. In Fig. 1 we illustrate some of the general
arises in the weak field limit of the Lorentz g&3]. The features of boundary thermostatted systems.
presence of fractals has been used to demonstrate how the We focus on dynamical thermostats of the Néssover-
second law of thermodynamics is consistent with time-type and its variants, which constitute one of the standard
reversal invariant, deterministic dynamid. approaches to the study of physical systems out of equilib-
Dimensional loss is ubiquitous, present in dynamical fium and are well studied. We will see that the type of heat
boundary-driven nonequilibrium steady-state microscopidaths chosen affeéD and the Lyapunov exponents, for the
simulations systems. Such systems include those in a thermg@me boundary temperatures; in thermal equilibrium, two
gradient set up through boundary heat baths, or those beirfjjfferent boundary conditions can .strongly modify the maxi-
sheared through moving walls. In all these cases, the acce8UM exponent as well as the entire spectrum. Nevertheless,
sible states in phase space contract onto a fractal set whépeaningful thermodynamic information can be extracted. In

transport is present. The difference between the equilibrium

phase space volume and that in a given nonequilibrium

steady state seems intimately connected to the transport pro-

cess. In such dynamical approaches, the resulting transport
requires the underlying phase space fractal to be present, and y
the corresponding loss of dimension which characterizes the T(X)
fractal leads to the natural questions as to whether it is physi-

cally realizable macroscopically.

In this article, we derive a relation between the chaotic
microscopic behavior of the system and the macroscopic T b
transport properties. This relation clarifies properties regard- !
ing the extensivityof AD. Namely, what is the scaling be-
havior of AD with respect to the system size and what is the
precise meaning of “extensivity” in boundary-driven sys- g 1. (Top) Diagram of a system thermostattédith finite
tems? If the behavior can be demonstrated to be extensiVgygiong at both ends with internal system volurve, and cross
then one can understand how the results obtained in finitesectionA. The shading indicates the temperature variation within.
Size SyStem Simu|ati0nS Cal’l’y over to the bulk ||m|t ThlS (Bottom) The relation between the boundary temperatu'fgqi
would then suggest how the dimensional loss in macroscopie 1,2), the actual temperatures just inside the systemand the
nonequilibrium steady states is in principle observable. Wayoundary temperature jum@d; . T; are obtained by extrapolating
try to elucidate these points for systems under thermal grahe interior temperature profil(x) to the boundaries. Near equi-
dients. librium, 8T,=48T,.

0 (VielA)
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this context, we investigate the meaning and the origins otonstant within the system, wherehss, as explained above.
extensivity of AD in systems with bulk behavior, including Second,V;, denotes the(interior) volume of the system,
finite-size corrections, and relate them to transport. Our rewhich does not include the thermostatted boundaries. This is
sults are then verified numerically. We systematically studyintuitively satisfying in that the thermal gradient exists solely
the system not only close to but also far from equilibrium, asin the interior of the system and the dimensional loss can be
well as the dependence on the heat baths themselves. Whilepresented using the variables pertaining to it. It is impor-
the extensivity of dimensional loss has been disputed due t@nt to note that the boundary thermostats can have fewer or
the incompatibility with local equilibriun{3], we will see  even more degrees of freedom than the internal system, and
that this is not an issue. its dependence will enter in a rather subtle manner, to be
AD has been studied previously for color conductionclarified below. Third, the system can have boundary jumps
[3,8,9], sheared fluid$4,5,10 and thermal conductiofé4], in temperature 5T, shown generically in Fig. 1bottom).
numerically. Analytic computations have understandablyThese describe how the interior temperature profi(&),
been restricted to small or idealized systef8s7,11. The  smoothly extrapolated to the boundaries, differs from the
physical properties are far from trivial; even whetheb temperatures at the boundaries controlled by the heat baths.
generally arises has been an is$lig]. Extensivity of AD These have been quantitatively studied and we will also in-
under thermal gradients has been analyiZddbut the rela- clude these effects in the following analy§ist].
tion to transport and entropy production was not elucidated Let us systematically investigate how the extensivity of
previously. Extensivity has been investigated in sheared fluAD arises. The phase space contracts because the system is
ids [5,9] and for color conductivity{8,9]. Study of the de- in nonequilibrium. This fact is reflected explicitly in a physi-
pendence on the number and types of thermostats or systemal property of Nosédoover thermostats and demons: The
atic analysis far from equilibrium have not been performedcontraction rate onto the attractef,E}D: 1\, is also the rate
before. . _ of entropy productionS [1,8]. We can use this to obtain a
Consider a system of volum¥;,, with cross-sectional thermodynamic relatiofil3]
areaA placed in contact with two heat baths at both ends
having temperaturesTf, T5), as in Fig. 1. Bysystem we

refer to the degrees of freedom not in direct contact with the D 1 1
bath, whilebath refers to all thermostats and thermostatted 2 \j= —S=AJ —O——O), 3)
degrees of freedom. The system and the bath give rig to =1 T1 T3

first order equations of motion. The Lyapunov spectrum

{Ni[Amax=N1=No=- - - =Np=\p;,} distills the micro-

scopic properties of the system and the bath, describing hows we approach equilibrium] approaches 0 so that we can
the classical trajectories diverge or converge over time irexpand in powers of as

phase space. The Kaplan-Yorke fractal dimendbg, is

computed from the full spectrum as

VinJ?

kT2

2ak
Vin

1+

+0(J%), (4)

J

D
K A=
j=1hj K- =1

1 K
e — Nj=0>2 A,
1 =1

ANk+1 i=
(1) where k is the thermal conductivity and represents the
AD is strictly positive in nonequilibrium, andD=0 in  average temperature. In Ed), we have included the effects
equilibrium system$1]. of boundary temperature jumps that behavéas aJ when
SinceDyy is a global quantity, we consider its expansion the Jumps are not too bil4]. a, which arises as a model-
in terms of the heat flow in the syster, which we shall dependent f|n|te—3|z_e correctlon, measures the efﬂcgcy_oj the
now analytically derive near equilibrium. We show that heat bathgstochastic or deterministicand can have signifi-
cant effects as will be shown. Note that Eg) holds both
AD close to and far from equilibrium and is independent of the
V—_=CD~32- (2)  type and number of thermostats used.
n The maximum Lyapunov exponent in the nonequilibrium

This relation shows precisely in what sense these systems af¥SteMAmax, can be expanded around the thermal equilib-
extensive, specifying how the dimensional loss scales withium value as\ na,=\pih+0O(J%). Extensivity of AD de-

the system size. Her&p, is a constant of proportionality pends on\il, being independenof Vi, for large enough
whose explicit relation to other physical quantities is derivedsystems, although it can depend Diwe will see that this is

and given in Eq(5). We note that for a given set of tempera- the case; see Fig. 6 and further discussion bgldm prin-

ture boundary conditions] is constant within the system ciple, it can also depend on the thermostats used and does, as
because there are no heat sinks nor reservoirs inside. A fewe will see below. Close to equilibrium, the above behavior
comments are in order. First, naively one might have thoughof EjD:l)\j and\5l ., when combined, explain the extensiv-

it more natural to us&/T instead of). However, such an ity of AD in Eqg. (2). In this limit, the extensivity ofAD

expression will be ambiguous sindéT is in generalnot  arises from extensivity oEjD=l)\j and intensivity ofAql..

AD:D_DKY:D_K“F
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Possible thermostat dependence\p,, can give rise similar
dependence ahD. Using the definition oDy, Cp can be
derived in theJ—0 limit:

Com—t ( 2”) R ©) .

= +

° KA%anTZ Vin K)\%qaxTz <

which relates macroscopic transport and entropy production 008 F (1,1,")=(0.5.05) \‘\.

to the microscopicAD. A subtlety needs to be mentioned: (037(50'%23 R [

We find in model systems below thef{,, is consistent with . ' L
0 10 20 30 40

having a finite, large-volume limit but have not proven this
statement analytically. In fact, this difficult issue is open and k
there have been somewhat conflicting results on the exis- FIG. 2. Three sets of complete Lyapunov spectra for #ife
tence of the thermodynamic limit ofé%, [15]. From our theory (L=41) in equilibrium and nonequilibrium.centered around
argument, we see that the extensive naturé bf requires |~ 0-- (The boundary temperatures are shown in the legefite
that \29, have a thermodynamic limit or vice versa. exponents have been joined by lines.

Computing AD requires the full Lyapunov spectrum,
which becomes rapidly impractical for increasing systemaffect the results below as long as the demons act effectively
size. Close to equilibrium, this difficulty can be overcome asas thermostats. More details regarding the thermostats can be

follows [5,8]. Define AD a5, AD min @S found in Ref.[13]. The interior includes the dynamics only
of the ¢* theory. Temperature is defined using the ideal gas
N N thermometer, T(x)=(#2). The number of (heat-bath
AD o= — ~ AD pin= N , (6)  boundary sites thermostatted on each evigl, will be var-
max min ied. We employed one set of thermostats per thermostatted

site. We ran the simulations using the fourth-order Runge-
Kutta method to integrate the equations of motion with time
steps of 10%-0.05 for 16—10° steps. We paid attention to
understanding its convergence properties and also checked
that the results do not change with the step size. To obtain the
complete Lyapunov spectrum, we used the method explained
in Refs.[18,8].

Some examples of the Lyapunov spectrum for thé
theory are shown in Fig. 2. We see that the spectrum is
symmetric with undek — —\ in equilibrium as it should be.

(If nonequilibrium, the spectrum has no analogous symmetry
ince the system is inhomogenedds$. Let us now look at

e dependence &D, AD,.x, andAD;, with respect to
(Fig. 3. Each value ofl represents a different temperature
boundary condition. We see that close enough to equilibrium,
all three quantities agree and displadf/behavior as in Egs.

lll. ¢* THEORY—A CONCRETE EXAMPLE (2) and(5). Remarkably, even far from equilibrium and well

. . . 2 .
While the above theory is valid in any dimension, we now!Nto the nonlinear regimeAD has a robusg” behavior, but
apply it to the 1D ¢* theory described by the following Not AD axmin- We further note that the boundary tempera-
Hamiltonian:

where N\ pax:Amin @re the maximum and minimum expo-
nents. WhenAD<1, AD;,=AD holds exactly For sys-
tems with bulk transport propertiesy T/T~A/V,;, and
AD/D~(A/V;;)? so thatAD/D is always small for large
systems and\D itself is small in one dimensiorjFor sys-
tems without a bulk limit, such as the one-dimensiaofi&))
FPU model, the dependence BfT/T can be anomalous, as
well as display crossover behavior in temperat{ii®].]
Since\ min=— Amax IN equilibrium, AD 4 should also be a
good approximation tAAD, close to equilibrium.EjD:l)\j
can be computed from the equations of motion alone an
Amax can be computed from evolving in addition one tangent,,
vector, so these estimates are relatively simple to computs,
and bound the behavior @&D.

T T
10 | with jumps
(7) without jumps -------

L 2 2 4
T (V) ¢y
H—le >+t —t
[a)]
Here,L is the total size of the system, including the thermo- < 1 ¢
statted regions. We choose th theory because it is a
classic statistical model that naturally appears in broad B
physical contexts. Also, the statistical properties of the %% oos  oos o002 0.08 008
theory have been studied previously, including thermal trans- -J -J
port which has bulk behavio[ﬂS,}ﬂ. We model the heat FIG. 3. AD(0), ADpax (O), andAD,y, (A) against—J in
baths dynamically by applying Nodgoover (NH) thermo- | =11 (left) and L=41 (right) at T=0.5 for theNg=1 case.J?
stats or their generalizatioidemons at the boundaries. The pehavior with and without finite size corrections are also shown.
demons impose the finite temperature boundary conditiongp displaysJ? behavior even for large-J and Eq.(2) is readily
statistically as we integrate the equations of moti®ier-  verified for these systems. The need to include boundary jump cor-
ministically. The coupling strength of the demons do notrections is evident as well.
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FIG. 4. (left) AD/J? againstV,, for Ng=1 (), and Ng
=40 (O), with NH thermostats(left) and demons(right) at T Via
=0.5. Vin /(kN8%,T?) (solid) and Vi, /(kNE9,T2)(1+2ak/Vi,)
(dashesare plotted. Application of the formulas to the data of Ref. ~ FIG. 6. System size dependencexgfl, at T=0.5 for NH ther-

[4] (A) also works very wel(data and formulas rescaled by 5000 mostatsNg=1 (X) andNg=40 () and demon¥Ng=1 (O) and
for plotting). Ng=40 (A). We see thak 5, tend to constant values, within error.

ture jumps have a significant effect, the effect being largesimilar behavior both for NH thermostats and demons, with
for smaller T. This is because the mean free path of thethe former being larger, and both decreasing vigh. Fur-
excitations are larger for small@rin the ¢* theory[13]. For  thermore, somewhat surprisingly, when we increbigeby
instance, usingx=2.83(4)T 132 and a=2.6(1), ok  one, therebyncreasingthe total number of degrees of free-
=300,6 forT=0.1,2, respectively. dom by 6(8) in the NH thermostatdemons case,C, de-

For each_, Ng, andT, we vary the temperature boundary creasesand so doed D for the samel. So the general trend,
conditions using the thermostats and obtain different valuesomewhat remarkably, is that as we increase the number of
of J at the same average temperatliréAnalyzing this data thermostats, the dimensional loss decreases for the §ame
as in Fig. 3, we extract the proportionality constard/J?>  The reason for this will be clarified below.
for a particular value oL, Nz, and T. Further combining We study examples of the behaviorBf’zl)\j in Fig. 5.
this data for variousV;,(=L—2Ng+1) andNg, we find We see that the entropy production relation E8). works
that relationg2) and(5) describe the results well over a few well near and far from equilibrium, and that the quadratic
orders in magnitude as shown in Fig. 4. Here, both 'Nosebehavior with respect td can be observed close to equilib-
Hoover thermostats and demons are used, and the size of them. This is true,independenthyof the type of thermostats
baths is varied from 1 to 40 sites on each side. The agreassed. As discussed above,}, is independent of the system
ment of Egs.(2)—(5) with the simulation is quite good. We size for large volumes, as can be seen in Fig. 6. On the other
have also included the data of Rpt] which usedstochastic hand,\5%, can and does depend on the type of thermostats
thermostats, and see that the formulas work quite well, demused as well a3 (Figs. 6 and ¥, explaining the thermostat
onstrating the robustness of relati®). dependence oEp, seen in Fig. 4. This might seem surprising

A few subtleties can now be resolved. First, we can andyt first in an equilibrium system. However, physical quanti-
have made the distinction between the total volumbich  ties, especially microscopic ones, can depend on the thermo-
includes the thermostatted regjoand Vi, in Eq. (2), since  stats and they do in general. The largéf,, for demons and
we have performed analyses wily=1-40 sites. Second, s increase withNg are physically sensible since the exis-

Cp can and does depend on the type of thermostats usggénce of more thermostats lead to more chaotic behavior.
(demons or Nhland its numbeNg as well as onT. Cp has

0.25 . : : i
i ) ¢
0.1 3 0.2 $
, i v oisf 2 g § &
<" 001k g T
W < o1} O -
! m
0.001 0.05 E .
[ P | N s 2 2 s 0 1 1 1 1
0.0001 0.01 0.1 0 10 20 30 40
J Ny

FIG. 5. 3P\, and J(U/T)-1/T9) against —J, for T FIG. 7. The dependence of th&l, on Ng at T=0.5 for NH
=0.5 d,+), T=2 (O, X), and their quadratic behavior E) thermostats[J) and demons@). This demonstrates that.?, is
near equilibrium(solid) for theL=162Ng=1 case. The quantities strongly heat-bath dependent, and is not uniquely determined by the
agree excellently. local equilibrium conditions.
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This is not obviousa priori, but increasing chaoticity de- Perhaps a practical comment is appropriate: Computing
creases\D for the sameT,J through Eq.(5). AD from Dgy is a numerically intensive task for moderate
sized systems, quickly becoming prohibitive for large sys-
IV. ESTIMATES FOR DIMENSIONAL LOSS tems since the necessary effort grows-aB?. In contrast,

the effort of computingAD . grows only as~2D, which
It is possible to establish the general conditions undefs quite affordable for larger systems. These computations

which the loss of dimension is not more than one degree ofan complement each other, as was done here. Larger sys-
freedom,AD<1. It is convenient to define the external en- tems inevitably tend to be closer to equilibrium so thdd
vironment through the ratio=AT/T, whereT is the central  tend to be small and D, are good approximations toD.
temperature and T is the difference in the boundary tem- One can further refine the computation by including the next
peratures. With this definitiony<2, always, andVT largest Lyapunov exponent and so on, if need be. On the
=rT/Vj,. Then, from Eqs(2) and (5 we derive a simple other hand, for small systemaD,,., in general isnot a
estimate for how large the system must be in order to satisfgood approximation t&D but then the complete Lyapunov
this dimensional loss condition: spectrum is obtainable so thAD can be computed without

approximation.

k(VT)? , K
e 12 yeq (8) V. SUMMARY AND DISCUSSION

max max

AD=1eV,=

We have derived the scaling propertiesAdD in systems

Let us analyzel =0.5 case more concretely; the condition iswith bulk behavior under thermal gradients in E),
most stringent foNg=1 (NH) case, when %, is the small-  thereby establishing precisely in what sense these systems
est. So we obtain the condition, /r?=130 forAD<1 and  are extensive, for a common class of dynamical thermostats.
for large lattices,V;,=400, it should be satisfied for any This extensivity explicitly relates the microscopic nature of
gradient, which is consistent with our results. While we didphase space to the macroscopic transport properties as in Eq.
not consider here the nonlinearity of the profiles, the bound{5) through entropy production. Previously, it was empha-
ary temperature jumps, and the nonlinearity of the responssized that the extensivity &fD is not compatible with local
[14,19, we are in some sense close to equilibrium whenequilibrium so that it is questionab[8]. It is now known
AD<1 so that the rough arguments suffice for the purpose ahat systems such ag* theory ind=1-3 display violations
hand. of local equilibrium under thermal gradients in a similar

For the case of small dimensional loss, specificAllp manner, as~J? [19]. This resolves the apparent conflict
<1, we can ask how large the difference is between theince the violations of local equilibrium emerge in a similar
actual dimensional losaD and the upper-bound estimate manner, and in conjunction with dimensional loss.
AD - In this case, we need to consid®f, .+ A mins We further explicitly verified using numerical simulations
which is zero in equilibrium since the Lyapunov spectrum isthat AD in ¢* theory behaves extensively under various
symmetric with respect to sign inversigt]. As we move thermal gradients fo<10* and its relation to transport.
away from equilibrium, the behavior can be described byRelations(2), (3), and (5), however, are more general. We
Mmax/Amint 1=C,J2+0(J%. Then, forAD=<1, saw that the relations applied well to Ré#] which used
stochastidhermostats in a different model. An application to
dilute gas using the standard estimates Qf, [1] yields

C
ZC)\ng ] . (9)

2

Co=  Zn(alla) D

ForNg=1, T=0.5, we have found through numerical simu-

lations thatC, =13L%5, so that
wherep is the densityp is the average particle velocitlyjs

o5 the mean free path, ardlis the particle diameter. Then for
(ADpax—AD) _ l(ﬁ) (10 VUT~001m%,  AD~10° (Vj,/n¥) at  room
AD 77100 temperature—quite large, yet far smaller than the total num-
ber of degrees of freedom.
The statistical errors in the numerical computatiol\&f are We find the results satisfying from the physics point of
typically at a few percent level, so whe&fD <1, we can see view: SinceAD pertains to the whole system, it includes the
from this inequality that the difference betwe&yD and temperature profile which is curved in general, boundary
ADax IS at most comparable to these errors, except fotemperature jumps and the various types of thermostats. Yet,
small systems. In Fig. 3, it can indeed be seen thatAfor ~ AD can be related to macroscopic transport with the thermo-
<1, AD .y agrees withAD within error. We further note stat dependence cleanly separated gg,. Furthermore,
thatAD .« IS a better approximation when the system size isAD has extensive behavior with respect to the internal vol-
larger so thatAD/D is smaller, as seen in Fig. 3. Similar ume wherein the system is manifestly in nonequilibrium. We
analysis can be applied at differeft have seen that;!, is not unique: In global thermal equilib-
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rium, different choices of heat baths can lead to very differ-
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