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Lyapunov exponents and the extensivity of dimensional loss for systems in thermal gradients
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An explicit relation between the dimensional loss (DD), entropy production, and transport is established
under thermal gradients, relating the microscopic and macroscopic behaviors of the system. The extensivity of
DD in systems with bulk behavior follows from the relation. The maximum Lyapunov exponents in thermal
equilibrium andDD in nonequilibrium depend on the choice of heat baths, while their product is unique and
macroscopic. Finite-size corrections are also computed and all results are verified numerically.
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I. INTRODUCTION

Fractal structures in phase space have become the f
of attention in the understanding of the relationship betw
microscopic dynamics and macroscopic nonequilibri
physics@1#. In the escape-rate formalism, the properties o
fractal repellor are known to govern the transport@2#. In
contrast, in boundary-driven nonequilibrium steady sta
the stationary distribution is generally fractal, but the prec
connection to transport is not fully understood@1#. This re-
duction in dimension,DD, has been argued to be related
transport @3–5#, although the only precise understandi
arises in the weak field limit of the Lorentz gas@3#. The
presence of fractals has been used to demonstrate how
second law of thermodynamics is consistent with tim
reversal invariant, deterministic dynamics@6#.

Dimensional loss is ubiquitous, present in dynamic
boundary-driven nonequilibrium steady-state microsco
simulations systems. Such systems include those in a the
gradient set up through boundary heat baths, or those b
sheared through moving walls. In all these cases, the ac
sible states in phase space contract onto a fractal set w
transport is present. The difference between the equilibr
phase space volume and that in a given nonequilibr
steady state seems intimately connected to the transport
cess. In such dynamical approaches, the resulting trans
requires the underlying phase space fractal to be present
the corresponding loss of dimension which characterizes
fractal leads to the natural questions as to whether it is ph
cally realizable macroscopically.

In this article, we derive a relation between the chao
microscopic behavior of the system and the macrosco
transport properties. This relation clarifies properties rega
ing the extensivityof DD. Namely, what is the scaling be
havior ofDD with respect to the system size and what is
precise meaning of ‘‘extensivity’’ in boundary-driven sy
tems? If the behavior can be demonstrated to be exten
then one can understand how the results obtained in fin
size system simulations carry over to the bulk limit. Th
would then suggest how the dimensional loss in macrosc
nonequilibrium steady states is in principle observable.
try to elucidate these points for systems under thermal
dients.
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II. RELATIONS BETWEEN DIMENSIONAL LOSS,
LYAPUNOV EXPONENTS AND TRANSPORT

Many of the issues relating toDD require the understand
ing of the Lyapunov spectrum of the nonequilibrium syste
whose analytic properties are known only in certain spe
cases@7#. Here, forDD, we use the Kaplan-Yorke dimensio
which is known to be consistent with other definitions of t
attractor dimension for physically reasonable dynamical s
tems @1#. The precise definition ofDD appears below. We
study general Hamiltonians coupled to two heat baths at
ferent temperatures at opposite sides of the system, gen
ing heat flow. In Fig. 1 we illustrate some of the gene
features of boundary thermostatted systems.

We focus on dynamical thermostats of the Nose´-Hoover-
type and its variants, which constitute one of the stand
approaches to the study of physical systems out of equ
rium and are well studied. We will see that the type of he
baths chosen affectDD and the Lyapunov exponents, for th
same boundary temperatures; in thermal equilibrium, t
different boundary conditions can strongly modify the ma
mum exponent as well as the entire spectrum. Neverthe
meaningful thermodynamic information can be extracted.

AT2
0

T1
0

T(x)

x
T1

0

T1
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δT2

δT1

0 (Vin/A)
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FIG. 1. ~Top! Diagram of a system thermostatted~with finite
regions! at both ends with internal system volumeVin and cross
sectionA. The shading indicates the temperature variation with
~Bottom! The relation between the boundary temperaturesTi

0 ( i
51,2), the actual temperatures just inside the systemTi , and the
boundary temperature jumpsdTi . Ti are obtained by extrapolating
the interior temperature profileT(x) to the boundaries. Near equ
librium, dT15dT2.
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K. AOKI AND D. KUSNEZOV PHYSICAL REVIEW E 68, 056204 ~2003!
this context, we investigate the meaning and the origins
extensivity ofDD in systems with bulk behavior, includin
finite-size corrections, and relate them to transport. Our
sults are then verified numerically. We systematically stu
the system not only close to but also far from equilibrium,
well as the dependence on the heat baths themselves. W
the extensivity of dimensional loss has been disputed du
the incompatibility with local equilibrium@3#, we will see
that this is not an issue.

DD has been studied previously for color conducti
@3,8,9#, sheared fluids@4,5,10# and thermal conduction@4#,
numerically. Analytic computations have understanda
been restricted to small or idealized systems@3,7,11#. The
physical properties are far from trivial; even whetherDD
generally arises has been an issue@12#. Extensivity of DD
under thermal gradients has been analyzed@4#, but the rela-
tion to transport and entropy production was not elucida
previously. Extensivity has been investigated in sheared
ids @5,9# and for color conductivity@8,9#. Study of the de-
pendence on the number and types of thermostats or sys
atic analysis far from equilibrium have not been perform
before.

Consider a system of volumeVin , with cross-sectiona
areaA placed in contact with two heat baths at both en
having temperatures (T1

0 ,T2
0), as in Fig. 1. Bysystem, we

refer to the degrees of freedom not in direct contact with
bath, whilebath refers to all thermostats and thermostatt
degrees of freedom. The system and the bath give riseD
first order equations of motion. The Lyapunov spectru
$l j ulmax[l1>l2>•••>lD[lmin% distills the micro-
scopic properties of the system and the bath, describing
the classical trajectories diverge or converge over time
phase space. The Kaplan-Yorke fractal dimensionDKY is
computed from the full spectrum as

DD5D2DKY5D2K1
( j 51

K l j

lK11
, (

j 51

K21

l j>0.(
j 51

K

l j ,

~1!

DD is strictly positive in nonequilibrium, andDD50 in
equilibrium systems@1#.

SinceDKY is a global quantity, we consider its expansi
in terms of the heat flow in the system,J, which we shall
now analytically derive near equilibrium. We show that

DD

Vin
5CDJ2. ~2!

This relation shows precisely in what sense these system
extensive, specifying how the dimensional loss scales w
the system size. Here,CD is a constant of proportionality
whose explicit relation to other physical quantities is deriv
and given in Eq.~5!. We note that for a given set of temper
ture boundary conditions,J is constant within the system
because there are no heat sinks nor reservoirs inside. A
comments are in order. First, naively one might have thou
it more natural to use“T instead ofJ. However, such an
expression will be ambiguous since“T is in generalnot
05620
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constant within the system, whereasJ is, as explained above
Second,Vin denotes the~interior! volume of the system,
which does not include the thermostatted boundaries. Th
intuitively satisfying in that the thermal gradient exists sole
in the interior of the system and the dimensional loss can
represented using the variables pertaining to it. It is imp
tant to note that the boundary thermostats can have fewe
even more degrees of freedom than the internal system,
its dependence will enter in a rather subtle manner, to
clarified below. Third, the system can have boundary jum
in temperature,dT, shown generically in Fig. 1~bottom!.
These describe how the interior temperature profileT(x),
smoothly extrapolated to the boundaries, differs from
temperatures at the boundaries controlled by the heat ba
These have been quantitatively studied and we will also
clude these effects in the following analysis@14#.

Let us systematically investigate how the extensivity
DD arises. The phase space contracts because the syst
in nonequilibrium. This fact is reflected explicitly in a phys
cal property of Nose´-Hoover thermostats and demons: T
contraction rate onto the attractor,2( j 51

D l j , is also the rate

of entropy production,Ṡ @1,8#. We can use this to obtain
thermodynamic relation@13#

(
j 51

D

l j52Ṡ5AJS 1

T1
0

2
1

T2
0D , ~3!

As we approach equilibrium,J approaches 0 so that we ca
expand in powers ofJ as

(
j 51

D

l j5
VinJ2

kT2 S 11
2ak

Vin
D1O~J4!, ~4!

where k is the thermal conductivity andT represents the
average temperature. In Eq.~4!, we have included the effect
of boundary temperature jumps that behave asdT5aJ when
the jumps are not too big@14#. a, which arises as a model
dependent finite-size correction, measures the efficacy of
heat baths~stochastic or deterministic!, and can have signifi-
cant effects as will be shown. Note that Eq.~3! holds both
close to and far from equilibrium and is independent of t
type and number of thermostats used.

The maximum Lyapunov exponent in the nonequilibriu
system,lmax, can be expanded around the thermal equil
rium value aslmax5lmax

eq 1O(J2). Extensivity of DD de-
pends onlmax

eq being independentof Vin for large enough
systems, although it can depend onT ~we will see that this is
the case; see Fig. 6 and further discussion below!. In prin-
ciple, it can also depend on the thermostats used and doe
we will see below. Close to equilibrium, the above behav
of ( j 51

D l j andlmax
eq , when combined, explain the extensi

ity of DD in Eq. ~2!. In this limit, the extensivity ofDD
arises from extensivity of( j 51

D l j and intensivity oflmax
eq .
4-2
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Possible thermostat dependence oflmax
eq can give rise similar

dependence ofDD. Using the definition ofDKY , CD can be
derived in theJ→0 limit:

CD5
1

klmax
eq T2 S 11

2ak

Vin
D ——→

Vin→` 1

klmax
eq T2

~5!

which relates macroscopic transport and entropy produc
to the microscopicDD. A subtlety needs to be mentione
We find in model systems below thatlmax

eq is consistent with
having a finite, large-volume limit but have not proven th
statement analytically. In fact, this difficult issue is open a
there have been somewhat conflicting results on the e
tence of the thermodynamic limit oflmax

eq @15#. From our
argument, we see that the extensive nature ofDD requires
that lmax

eq have a thermodynamic limit or vice versa.
Computing DD requires the full Lyapunov spectrum

which becomes rapidly impractical for increasing syst
size. Close to equilibrium, this difficulty can be overcome
follows @5,8#. DefineDDmax,DDmin as

DDmax[2
( j 51

D l j

lmax
, DDmin[

( j 51
D l j

lmin
, ~6!

where lmax,lmin are the maximum and minimum expo
nents. WhenDD<1, DDmin5DD holds exactly. For sys-
tems with bulk transport properties,“T/T;A/Vin and
DD/D;(A/Vin)2 so thatDD/D is always small for large
systems andDD itself is small in one dimension.@For sys-
tems without a bulk limit, such as the one-dimensional~1D!
FPU model, the dependence of“T/T can be anomalous, a
well as display crossover behavior in temperature@16#.#
Sincelmin52lmax in equilibrium,DDmax should also be a
good approximation toDD, close to equilibrium.( j 51

D l j

can be computed from the equations of motion alone
lmax can be computed from evolving in addition one tang
vector, so these estimates are relatively simple to comp
and bound the behavior ofDD.

III. f4 THEORY—A CONCRETE EXAMPLE

While the above theory is valid in any dimension, we no
apply it to the 1Df4 theory described by the following
Hamiltonian:

H5 (
x51

L Fpx
2

2
1

~“fx!
2

2
1

fx
4

4 G . ~7!

Here,L is the total size of the system, including the therm
statted regions. We choose thef4 theory because it is a
classic statistical model that naturally appears in bro
physical contexts. Also, the statistical properties of
theory have been studied previously, including thermal tra
port which has bulk behavior@13,17#. We model the hea
baths dynamically by applying Nose´-Hoover ~NH! thermo-
stats or their generalizations~demons! at the boundaries. The
demons impose the finite temperature boundary condit
statistically as we integrate the equations of motiondeter-
ministically. The coupling strength of the demons do n
05620
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affect the results below as long as the demons act effecti
as thermostats. More details regarding the thermostats ca
found in Ref.@13#. The interior includes the dynamics onl
of the f4 theory. Temperature is defined using the ideal g
thermometer, T(x)5^px

2&. The number of ~heat-bath!
boundary sites thermostatted on each end,NB , will be var-
ied. We employed one set of thermostats per thermosta
site. We ran the simulations using the fourth-order Run
Kutta method to integrate the equations of motion with tim
steps of 1023–0.05 for 106–109 steps. We paid attention to
understanding its convergence properties and also che
that the results do not change with the step size. To obtain
complete Lyapunov spectrum, we used the method expla
in Refs.@18,8#.

Some examples of the Lyapunov spectrum for thef4

theory are shown in Fig. 2. We see that the spectrum
symmetric with underl↔2l in equilibrium as it should be.
In nonequilibrium, the spectrum has no analogous symm
since the system is inhomogeneous@1#. Let us now look at
the dependence ofDD, DDmax, andDDmin with respect to
J ~Fig. 3!. Each value ofJ represents a different temperatu
boundary condition. We see that close enough to equilibriu
all three quantities agree and displayJ2 behavior as in Eqs.
~2! and~5!. Remarkably, even far from equilibrium and we
into the nonlinear regime,DD has a robustJ2 behavior, but
not DDmax,min . We further note that the boundary temper

FIG. 2. Three sets of complete Lyapunov spectra for thef4

theory (L541) in equilibrium and nonequilibrium centered aroun
T50.5. ~The boundary temperatures are shown in the legend.! The
exponents have been joined by lines.

0.1

1

10

0.02 0.04 0.08

∆D

-J

with jumps
without jumps

0.02 0.04 0.08

-J

FIG. 3. DD(h), DDmax (s), andDDmin (n) against2J in
L511 ~left! and L541 ~right! at T50.5 for theNB51 case.J2

behavior with and without finite size corrections are also show
DD displaysJ2 behavior even for large2J and Eq.~2! is readily
verified for these systems. The need to include boundary jump
rections is evident as well.
4-3
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K. AOKI AND D. KUSNEZOV PHYSICAL REVIEW E 68, 056204 ~2003!
ture jumps have a significant effect, the effect being lar
for smaller T. This is because the mean free path of t
excitations are larger for smallerT in thef4 theory@13#. For
instance, usingk52.83(4)T21.35(2) and a52.6(1), 2ak
5300,6 forT50.1,2, respectively.

For eachL, NB , andT, we vary the temperature bounda
conditions using the thermostats and obtain different val
of J at the same average temperatureT. Analyzing this data
as in Fig. 3, we extract the proportionality constantDD/J2

for a particular value ofL, NB , and T. Further combining
this data for variousVin(5L22NB11) and NB , we find
that relations~2! and~5! describe the results well over a fe
orders in magnitude as shown in Fig. 4. Here, both No´-
Hoover thermostats and demons are used, and the size o
baths is varied from 1 to 40 sites on each side. The ag
ment of Eqs.~2!–~5! with the simulation is quite good. We
have also included the data of Ref.@4# which usedstochastic
thermostats, and see that the formulas work quite well, d
onstrating the robustness of relation~2!.

A few subtleties can now be resolved. First, we can a
have made the distinction between the total volume~which
includes the thermostatted region! and Vin in Eq. ~2!, since
we have performed analyses withNB51 –40 sites. Second
CD can and does depend on the type of thermostats u
~demons or NH! and its numberNB as well as onT. CD has

10

100

1000

10000

100000

10 100 1000

∆D
/J

2

Vin

10 100 1000 10000

Vin

FIG. 4. ~left! DD/J2 against Vin for NB51 (h), and NB

540 (s), with NH thermostats~left! and demons~right! at T
50.5. Vin /(klmax

eq T2) ~solid! and Vin /(klmax
eq T2)(112ak/Vin)

~dashes! are plotted. Application of the formulas to the data of R
@4# (n) also works very well~data and formulas rescaled by 500
for plotting!.

FIG. 5. ( j 51
D l j and J(1/T1

021/T2
0) against 2J, for T

50.5 (h,1), T52 (s,3), and their quadratic behavior Eq.~3!
near equilibrium~solid! for the L5162,NB51 case. The quantities
agree excellently.
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similar behavior both for NH thermostats and demons, w
the former being larger, and both decreasing withNB . Fur-
thermore, somewhat surprisingly, when we increaseNB by
one, therebyincreasingthe total number of degrees of free
dom by 6~8! in the NH thermostat~demons! case,CD de-
creasesand so doesDD for the sameJ. So the general trend
somewhat remarkably, is that as we increase the numbe
thermostats, the dimensional loss decreases for the samJ.
The reason for this will be clarified below.

We study examples of the behavior of( j 51
D l j in Fig. 5.

We see that the entropy production relation Eq.~3! works
well near and far from equilibrium, and that the quadra
behavior with respect toJ can be observed close to equilib
rium. This is true,independentlyof the type of thermostats
used. As discussed above,lmax

eq is independent of the system
size for large volumes, as can be seen in Fig. 6. On the o
hand,lmax

eq can and does depend on the type of thermos
used as well asT ~Figs. 6 and 7!, explaining the thermosta
dependence ofCD seen in Fig. 4. This might seem surprisin
at first in an equilibrium system. However, physical quan
ties, especially microscopic ones, can depend on the ther
stats and they do in general. The largerlmax

eq for demons and
its increase withNB are physically sensible since the exi
tence of more thermostats lead to more chaotic behav

. FIG. 6. System size dependence oflmax
eq at T50.5 for NH ther-

mostatsNB51 (3) andNB540 (h) and demonsNB51 (s) and
NB540 (n). We see thatlmax tend to constant values, within erro

FIG. 7. The dependence of thelmax
eq on NB at T50.5 for NH

thermostats (h) and demons (s). This demonstrates thatlmax
eq is

strongly heat-bath dependent, and is not uniquely determined by
local equilibrium conditions.
4-4
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This is not obviousa priori, but increasing chaoticity de
creasesDD for the sameT,J through Eq.~5!.

IV. ESTIMATES FOR DIMENSIONAL LOSS

It is possible to establish the general conditions un
which the loss of dimension is not more than one degree
freedom,DD<1. It is convenient to define the external e
vironment through the ratior[DT/T, whereT is the central
temperature andDT is the difference in the boundary tem
peratures. With this definition,r<2, always, and¹T
.rT/Vin . Then, from Eqs.~2! and ~5! we derive a simple
estimate for how large the system must be in order to sat
this dimensional loss condition:

DD<1⇔Vin>
k~¹T!2

lmax
eq T2

.r 2
k

lmax
eq

. ~8!

Let us analyzeT50.5 case more concretely; the condition
most stringent forNB51 ~NH! case, whenlmax

eq is the small-
est. So we obtain the conditionVin /r 2*130 forDD<1 and
for large lattices,Vin*400, it should be satisfied for an
gradient, which is consistent with our results. While we d
not consider here the nonlinearity of the profiles, the bou
ary temperature jumps, and the nonlinearity of the respo
@14,19#, we are in some sense close to equilibrium wh
DD<1 so that the rough arguments suffice for the purpos
hand.

For the case of small dimensional loss, specificallyDD
<1, we can ask how large the difference is between
actual dimensional lossDD and the upper-bound estima
DDmax. In this case, we need to considerlmax1lmin ,
which is zero in equilibrium since the Lyapunov spectrum
symmetric with respect to sign inversion@1#. As we move
away from equilibrium, the behavior can be described
lmax/lmin115ClJ21O(J4). Then, forDD<1,

DDmax2DD

DD
.ClJ2<

Cl

VinCD
. ~9!

For NB51, T50.5, we have found through numerical sim
lations thatCl513L0.5, so that

~DDmax2DD !

DD
&0.1S Vin

100D
20.5

. ~10!

The statistical errors in the numerical computation ofDD are
typically at a few percent level, so whenDD<1, we can see
from this inequality that the difference betweenDD and
DDmax is at most comparable to these errors, except
small systems. In Fig. 3, it can indeed be seen that forDD
<1, DDmax agrees withDD within error. We further note
thatDDmax is a better approximation when the system size
larger so thatDD/D is smaller, as seen in Fig. 3. Simila
analysis can be applied at differentT.
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Perhaps a practical comment is appropriate: Compu
DD from DKY is a numerically intensive task for modera
sized systems, quickly becoming prohibitive for large sy
tems since the necessary effort grows as;D2. In contrast,
the effort of computingDDmax grows only as;2D, which
is quite affordable for larger systems. These computati
can complement each other, as was done here. Larger
tems inevitably tend to be closer to equilibrium so thatDD
tend to be small andDDmax are good approximations toDD.
One can further refine the computation by including the n
largest Lyapunov exponent and so on, if need be. On
other hand, for small systems,DDmax in general isnot a
good approximation toDD but then the complete Lyapuno
spectrum is obtainable so thatDD can be computed withou
approximation.

V. SUMMARY AND DISCUSSION

We have derived the scaling properties ofDD in systems
with bulk behavior under thermal gradients in Eq.~2!,
thereby establishing precisely in what sense these sys
are extensive, for a common class of dynamical thermos
This extensivity explicitly relates the microscopic nature
phase space to the macroscopic transport properties as in
~5! through entropy production. Previously, it was emph
sized that the extensivity ofDD is not compatible with local
equilibrium so that it is questionable@3#. It is now known
that systems such asf4 theory ind51 –3 display violations
of local equilibrium under thermal gradients in a simil
manner, as;J2 @19#. This resolves the apparent confli
since the violations of local equilibrium emerge in a simil
manner, and in conjunction with dimensional loss.

We further explicitly verified using numerical simulation
that DD in f4 theory behaves extensively under vario
thermal gradients forL&104 and its relation to transport
Relations~2!, ~3!, and ~5!, however, are more general. W
saw that the relations applied well to Ref.@4# which used
stochasticthermostats in a different model. An application
dilute gas using the standard estimates oflmax @1# yields

CD.
2

rv2ln~4l /d!
~11!

wherer is the density,v is the average particle velocity,l is
the mean free path, andd is the particle diameter. Then fo
“T/T;0.01 m21, DD;108 (Vin /m3) at room
temperature—quite large, yet far smaller than the total nu
ber of degrees of freedom.

We find the results satisfying from the physics point
view: SinceDD pertains to the whole system, it includes th
temperature profile which is curved in general, bound
temperature jumps and the various types of thermostats.
DD can be related to macroscopic transport with the therm
stat dependence cleanly separated intolmax. Furthermore,
DD has extensive behavior with respect to the internal v
ume wherein the system is manifestly in nonequilibrium. W
have seen thatlmax

eq is not unique: In global thermal equilib
4-5
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rium, different choices of heat baths can lead to very diff
ent values. The result is that dimensional loss is not uni
either, only the productDDlmax

eq behaves macroscopicall
and can be related to thermodynamic quantities.
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